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SUMMARY

Flowers come in a variety of colors, shapes and sizes. Despite this variety, flowers have a very stereotypical

architecture, consisting of a series of sterile organs surrounding the reproductive structures. Arabidopsis, as

the premier model system for molecular and genetic analyses of plant development, has provided a wealth of

insights into how this architecture is specified. With the advent of the completion of the Arabidopsis genome

sequence a decade ago, in combination with a rich variety of forward and reverse genetic strategies, many of

the genes and regulatory pathways controlling flower initiation, patterning, growth and differentiation have

been characterized. A central theme that has emerged from these studies is the complexity and abundance of

both positive and negative feedback loops that operate to regulate different aspects of flower formation.

Presumably, this considerable degree of feedback regulation serves to promote a robust and stable transition

to flowering, even in the face of genetic or environmental perturbations. This review will summarize recent

advances in defining the genes, the regulatory pathways, and their interactions, that underpin how the

Arabidopsis flower is formed.
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INTRODUCTION

Plants grow through the continuous action of meristems.

Meristems consist of a population of stem cells that undergo

two antagonistic processes: the formation of derivatives that

will go on to differentiate, and the renewal of the stem cell

population. During vegetative development, the shoot apical

meristem produces leaves and axillary buds on its flanks.

Upon perceiving the appropriate environmental cues, the

shoot apical meristem converts to a reproductively deter-

mined inflorescence meristem (Amasino, 2010, this issue).

In Arabidopsis, the inflorescence meristem produces addi-

tional secondary inflorescence meristems, as well as floral

meristems on its flanks, to give rise to the characteristic

architecture of the mature plant.

A floral meristem differs from other meristems in a

number of important ways. Notably, the floral meristem

sequentially produces floral organs: the sepals, petals,

stamens and carpels (Figure 1). These organs arise in

concentric rings, or whorls (Steeves and Sussex, 1989;

Smyth et al., 1990). In Arabidopsis, four sepals arise in the

outermost, or first, whorl; these leaflike organs enclose

the flower bud as it develops. Four white petals arise in

the second whorl, in positions that alternate with the

sepals. Six stamens, which consist of a filament and an

anther at the tip that produces the pollen, arise in the third

whorl. The central fourth whorl produces the female

reproductive structure, the gynoecium, which is composed

of two fused carpels. The gynoecium contains the ovules,

which, upon fertilization, will go on to produce the seed.

Unlike vegetative shoot apical meristems that continue to

produce leaves and axillary buds essentially indefinitely,

the floral meristem is determinate, in that it is eventually

consumed in the production of the flower, terminating its

development.

In 1790, Goethe proposed that floral organs represent

modified leaves (Goethe, 1790). This idea of a common

underlying mechanism has been substantially reinforced by

recent findings showing that the action of a floral meristem

in forming floral organs has considerable similarities to that

of a shoot apical meristem in producing leaves (Carles and

Fletcher, 2003; Sablowski, 2007). Nonetheless, it is also clear

that there are a number of gene products operating specif-

ically during flower development. In many cases, these
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products interface with the ‘ground-state’ lateral-organ

producing machinery and modify these processes to give

rise to floral tissues. This review will focus on those

pathways that appear to act specifically, or predominantly,

during floral development to produce the unique organs and

tissues of the flower.

ESTABLISHING THE FLORAL MERISTEM

The floral meristem emerges as a lateral outgrowth, or

bulge, on the periphery of the inflorescence meristem. It is

at this stage that some of the first markers of floral specific

gene expression can be detected (Grandjean et al., 2004;

Reddy et al., 2004; Heisler et al., 2005). Once the floral mer-

istem is established, it undergoes a stereotypical pattern of

growth through a series of well-defined stages (Smyth et al.,

1990). Landmark stages include: stage 1, which corresponds

to the first morphological appearance of an outgrowth on

the flank of the inflorescence meristem; stage 3, when sepal

primordia first appear; stage 5, when petal and stamen pri-

mordia become visibly apparent; and stage 13, when the

bud opens and anthesis occurs.

The Arabidopsis floral meristem is, like other shoot apical

meristems, composed of three clonally distinct cell layers.

The outer L1 and subepidermal L2 are single-cell layers that

maintain their layered organization through anticlinal cell

divisions (Steeves and Sussex, 1989). The underlying L3 is

composed of several cell layers that divide in all directions.

Despite the relatively regular arrangement of oriented cell

divisions, the occasional deviations from this regularity

indicate that signaling among floral meristem cells is critical

to produce a flower (Jenik and Irish, 2000; Reddy et al., 2004;

Kwiatkowska, 2006). Although relatively little is known of the

mechanisms coordinating growth and differentiation of the

floral meristem, the analyses of a number of genes and their

interactions are beginning to shed light on some of these

processes.

LEAFY (LFY) is a key player in the specification of floral

meristem identity. Severe LFY mutations fail to initiate floral

meristems and instead produce secondary inflorescence

branches (Weigel et al., 1992). Furthermore, ectopic expres-

sion of LFY induces precocious flower formation, indicating

that LFY is also sufficient for specifying floral meristem

identity (Weigel and Nilsson, 1995). LFY encodes a novel

type of transcription factor, with homologs found through-

out the plant kingdom (Maizel et al., 2005; Hames et al.,

2008). In non-flowering plants, LFY appears to have a

general role in regulating sporophyte development (Maizel

et al., 2005; Tanahashi et al., 2005). In angiosperms, though,

LFY appears to have acquired a new role in specifying floral

meristem identity (Coen et al., 1990; Souer et al., 1998;

Molinero-Rosales et al., 1999; Bomblies et al., 2003).

LFY is expressed at low levels in vegetative tissues and its

expression is strongly upregulated in response to floral

inductive signals, including photoperiodic signals mediated

through the FT pathway as well as gibberellins (Hempel

et al., 1997; Blazquez et al., 1998; Nilsson et al., 1998;

Wagner et al., 1999; Blazquez and Weigel, 2000; Eriksson

et al., 2006; Achard et al., 2007; Lee et al., 2008). Because

LFY responds to a variety of floral inductive signals and is

central in eliciting a flowering response, it has been

described as a floral pathway integrator (Simpson and

Dean, 2002).

Plants mutant for lfy eventually do produce axillary

meristems that possess some floral identity, due to the

activity of APETALA1 (AP1) (Huala and Sussex, 1992; Mandel

et al., 1992; Bowman et al., 1993; Mandel and Yanofsky,

1995). Loss of function mutations in AP1 show a partial

conversion of floral meristems to a more inflorescence-like

identity, and lfy ap1 double mutants almost entirely lack

flowers, indicating that these two genes together are largely

(a)

(b)

(c)

Figure 1. The Arabidopsis flower.

(a) Mature flower at anthesis.

(b) Cartoon of a lateral section through a mature flower, with organ types

indicated.

(c) Floral diagram showing the relative placement of floral organs. Organ

types are colored as in (b).
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responsible for specifying the floral meristem (Irish and

Sussex, 1990; Huala and Sussex, 1992; Bowman et al., 1993;

Shannon and Meeks-Wagner, 1993). AP1 encodes a MADS

box transcription factor (Mandel et al., 1992), and a number

of other MADS box genes also participate in promoting

floral meristem identity. These include the AP1 paralogs

CAULIFLOWER (CAL) and FRUITFULL (FUL) (Bowman et al.,

1993; Kempin et al., 1995; Ferrandiz et al., 2000a), as well as

AGAMOUS-LIKE24 (AGL24), SHORT VEGETATIVE PHASE

(SVP) and SUPPRESSOR OF CONSTANS1 (SOC1) (Gregis

et al., 2008; Melzer et al., 2008). The overlapping functions of

these MADS box gene products presumably reflect redun-

dancy in their action in regulating transcription of target

genes required for flower development.

A variety of feedback loops govern the action of these

genes in floral meristem specification (Figure 2). This

serves to create a very robust and stable transition to

flowering by both promoting a determinate floral meristem

fate and repressing an indeterminate shoot fate. TERMINAL

FLOWER1 (TFL1) is necessary for indeterminate shoot fate,

since tfl1 mutants show conversion of inflorescence mer-

istems to floral meristems (Bradley et al., 1997; Ratcliffe

et al., 1998). TFL1 has been proposed to act as a mobile

shoot-promoting signal, potentially through developmen-

tally regulated release from protein storage vacuoles (Conti

and Bradley, 2007; Sohn et al., 2007). One role of AP1 and

LFY is to repress TFL1 and so suppress indeterminate fate

(Weigel et al., 1992; Liljegren et al., 1999; Ratcliffe et al.,

1999). In turn, TFL1 acts to repress LFY and AP1 in

inflorescence meristems (Ratcliffe et al., 1998). This balance

between TFL1 and the floral meristem identity genes

regulates overall shoot architecture, ensuring the formation

of flowers at the appropriate place and time. Subtle shifts in

this balance are probably responsible for variation in shoot

architecture across flowering plant species (Prusinkiewicz

et al., 2007).

LFY is initially expressed very early throughout the

presumptive floral meristem, and its activity results in a

cascade of transcriptional events controlling floral meristem

formation (Weigel et al., 1992; Simon et al., 1996). AP1

expression can be detected throughout the floral meristem

well after the initial expression of LFY (Mandel et al., 1992;

Simon et al., 1996; Hempel et al., 1997; Wagner et al., 1999).

This reflects the fact that LFY directly activates the transcrip-

tion of AP1 (Mandel and Yanofsky, 1995; Wagner et al.,

1999). Even though AP1 and LFY are expressed throughout

the floral meristem, their gene products can act in a non-cell-

autonomous fashion suggesting that their action in promot-

ing a floral meristem is reinforced by cell-to-cell signaling

(Sessions et al., 2000; Wu et al., 2003). Other factors also

play a role in upregulating AP1 expression in floral primor-

dia. These factors include the direct activation of AP1 by the

photoperiodic responsive FT/FD complex (Wigge et al.,

2005). AP1 in turn represses the expression of AGL24, SVP

and SOC1 (Yu et al., 2004a; Liu et al., 2007, 2009). AGL24,

SVP and SOC1 repress the expression of another MADS box

gene, SEPALLATA3 (SEP3), and so one consequence of AP1

activation is to derepress SEP3. SEP3 can then physically

interact with LFY to promote flower development through

activation of floral organ identity genes, and through

interactions with other MADS box proteins (Honma and

Goto, 2001; Castillejo et al., 2005; Immink et al., 2009; Liu

et al., 2009). This cascade of regulation can control the

precise timing of early events in the establishment of the

floral meristem; subsequent downregulation of these genes

promotes further differentiation of the floral meristem and

production of floral organs.

AGAMOUS: THE LYNCHPIN OF DETERMINACY

AGAMOUS (AG) encodes a MADS box transcription factor,

and is pivotal in promoting the determinate development

of the floral meristem by limiting stem cell proliferation

(Figure 3) (Bowman et al., 1989; Yanofsky et al., 1990). One

of the main roles of LFY is to appropriately regulate AG

expression. The relative timing of this regulation is impor-

tant, as a precise balance is needed between the proliferative

stem cell activity of the floral meristem during early phases

Figure 2. Genes involved in the establishment of the floral meristem.

A network of interactions governs the function of a variety of gene products,

which culminates in the activation of the floral organ identity genes.

Transcription factors are in ovals, other factors are in rectangles. Positive

regulatory interactions are indicated by arrows and negative regulatory

interactions by blunt-ended lines. Protein–protein interactions indicated by

dotted lines.
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of floral organogenesis and its eventual termination to form

the determinate flower.

During vegetative development, the continued prolifera-

tion of cells in the shoot apical meristem relies on the

maintenance of stem cell activity. Maintenance of this stem

cell population depends on the action of WUSCHEL (WUS), a

homeodomain-containing transcription factor, which is

expressed in the organizing center of the shoot apical

meristem and is necessary and sufficient to maintain stem

cell identity (Mayer et al., 1998; Brand et al., 2000; Schoof

et al., 2000). In floral meristems, WUS and LFY bind to

adjacent sites in the AG regulatory region, promoting its

upregulation (Busch et al., 1999; Lenhard et al., 2001; Loh-

mann et al., 2001; Hong et al., 2003). In turn, the activation of

AG negatively feeds back on the expression of WUS,

resulting in downregulated stem cell proliferation and

promotion of determinacy. A number of lines of evidence

suggest that AG-mediated downregulation of WUS is indi-

rect (Sablowski, 2007), and at least one gene has been

identified that may mediate this regulatory interaction. AG

directly induces the expression of KNUCKLES (KNU), encod-

ing a C2H2 zinc finger putative transcriptional repressor,

which in turn is necessary for repression of WUS in the floral

meristem (Payne et al., 2004; Sun et al., 2009). During

normal floral development, WUS expression disappears by

stage 6, and the temporal control of WUS downregulation

appears to involve a progressive reduction in levels of the

repressive histone H3 Lys 27 trimethylation at the KNU locus

(Sun et al., 2009). This could serve to regulate a timing

mechanism that promotes the shift from proliferative to

differentiative growth.

A number of other genes have been shown to participate

in controlling determinacy by regulating AG. These include

PERIANTHIA (PAN), initially identified on the basis of its

extra floral organs mutant phenotype, which could reflect a

subtle loss of floral determinacy (Running and Meyerowitz,

1996). PAN encodes a bZIP transcription factor that directly

activates AG; AG in turn negatively regulates the expression

of PAN in a feedback loop (Chuang et al., 1999; Das et al.,

2009; Maier et al., 2009). The HUA1, HUA2 and HEN4 gene

products are also all required for floral determinacy and act

to facilitate AG pre-mRNA processing (Chen and Meyero-

witz, 1999; Cheng et al., 2003). Determinacy is also con-

trolled by the action of ULTRAPETALA1 (ULT1), encoding a

SAND-domain transcription factor that regulates AG expres-

sion (Carles et al., 2005; Prunet et al., 2008). It is not yet clear

if all these pathways operate in parallel, or whether WUS

mediates all of these inputs into regulation of AG expres-

sion. Together, though, these observations emphasize that

there are several feedback loops that together modulate the

precise balance between AG and WUS expression in

controlling floral meristem determinacy.

THE ABCS OF ORGAN IDENTITY

Another role of the floral meristem identity genes is to acti-

vate the floral organ identity genes. Mutations in the floral

organ identity genes result in homeotic transformations of

one organ type into another. Analyses of these mutations

led to the formulation of the now classic ‘ABC’ model of

floral organ identity specification (Bowman et al., 1991;

Coen and Meyerowitz, 1991; Weigel and Meyerowitz, 1994).

In this model, three classes of gene function, A, B and C, act

in a combinatorial manner to uniquely specify each organ

type in a specific spatial domain (Figure 4). A function

specifies sepal identity in the first whorl, while A and B

activities together specify petal identity in the second whorl.

B plus C activity specifies stamens in the third whorl, while C

activity in the fourth whorl specifies carpel identity. In

addition, the A and C functions were proposed to negatively

regulate each other’s activity. Although this model was ini-

tially proposed based on genetic criteria, molecular analyses

of the genes encoding the ABC functions have substantiated

many of the tenets of this model.

AP1 and APETALA2 (AP2) are both required for normal

sepal and petal development, and are required for A function

(Irish and Sussex, 1990; Bowman et al., 1991, 1993). APET-

ALA3 (AP3) and PISTILLATA (PI) together confer B function,

while AG is necessary for C function (Bowman et al., 1991).

In addition, four largely redundant SEPALLATA (SEP1–4)

genes act in concert with the ABC genes to specify organ

identity (Pelaz et al., 2000; Ditta et al., 2004). In fact, the

combined ectopic expression of the SEP and ABC genes is

sufficient to convert leaves into floral organs (Honma and

Goto, 2001; Pelaz et al., 2001). There is likely to be consid-

erable overlap in the processes controlling floral meristem

function and organ identity since AP1, SEP3 and AG have all

been shown to have additional roles in floral meristem

establishment (see above). AP1, AP3, PI, AG and the SEP

genes all encode MADS domain transcription factors, while

AP2 encodes a member of the AP2/EREBP family of

transcription factors, implying that a transcriptional regula-

tory network is central to the specification of organ identity

Figure 3. Genes involved in promoting a determinate floral meristem.

Determinacy is controlled by a variety of regulatory inputs controlling AG

expression and function. Notation as in Figure 2.
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(Yanofsky et al., 1990; Jack et al., 1992; Mandel et al., 1992;

Goto and Meyerowitz, 1994; Jofuku et al., 1994; Weigel,

1995; Pelaz et al., 2000; Ditta et al., 2004).

The roles of AP1 and AP2 as A function genes may be a

relatively recent evolutionary acquisition as, in general,

homologs of these genes in other species do not function in

specifying sepal and petal identity (Zik and Irish, 2003a; Litt,

2007). Rather, such genes appear to have a common role in

regulating meristem identity, suggesting that the role of AP1

and AP2 in Arabidopsis represents a novel modification of

a more ancestral function that may have been associated

with the origin of the flower itself.

The combinatorial action of the ABC genes depends on

their expression in discrete regions of the developing flower

(Figure 4). AP1 is initially expressed throughout the floral

meristem in response to LFY activity, and later its expression

becomes restricted to the first and second whorls, consistent

with its dual roles as a meristem identity and A function

organ identity gene (Mandel et al., 1992; Parcy et al., 1998;

Wagner et al., 1999). This spatial localization depends on AG

expression in the third and fourth whorls, which represses

AP1 in those regions (Gustafson-Brown et al., 1994). It is not

clear, however, how AG expression is restricted to the third

and fourth whorls. Regulation by WUS during establishment

of the floral meristem is not sufficient, as the domain of WUS

expression in the center of the meristem is far smaller than

that of AG (Mayer et al., 1998). Genetic analyses indicate that

the establishment of the third and fourth whorl domain of

AG expression depends on AP2 function (Bowman et al.,

1991; Drews et al., 1991). Transcripts of AP2 are found

(a)

(b)

(c)

Figure 4. Genes involved in organ identity

specification.

(a) Regulatory interactions important in the

activation and maintenance of organ identity

gene expression. Notation as in Figure 2.

(b) Cartoons of patterns of expression of three

MADS box organ identity genes at stage 6 of

flower development. At this stage, APETALA1

(AP1) is expressed in the first and second whorls,

APETALA3 (AP3) is expressed in the second

and third whorls and AGAMOUS (AG) is

expressed in the third and fourth whorls.

(c) Distinct protein complexes can uniquely

specify each organ type.
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throughout the floral meristem, although its function is

restricted to the first and second whorls (Bowman et al.,

1991; Jofuku et al., 1994). This occurs through the action of a

microRNA, miR172, that acts to repress AP2 function in the

third and fourth whorls through a translational, as opposed

to an RNA cleavage, mechanism (Aukerman and Sakai, 2003;

Chen, 2004; Zhao et al., 2007). Although initially expressed

throughout the floral meristem, miR172 itself becomes

localized to the inner two whorls; how this occurs is not

yet known (Chen, 2004).

As an A function gene, AP1 would be predicted to restrict

AG expression to the third and fourth whorls; however, loss

of AP1 function does not result in ectopic AG expression

(Weigel and Meyerowitz, 1993). AP1 does, however, form a

protein complex with the LEUNIG (LUG) and SEUSS (SEU)

transcriptional co-repressors that can bind to regulatory

sequences of AG; this results in transcriptional repression of

AG in the first and second whorls (Sridhar et al., 2004, 2006;

Gregis et al., 2006). There is evidence that this co-repressor

complex also includes the products of the SEP3, SVP and

AGL24 MADS box genes (Gregis et al., 2006, 2009). SEP3,

SVP and AGL24 also mediate floral meristem identity

(Figure 2), suggesting that multiple and distinct interactions

between these MADS domain proteins coordinate both

floral meristem and floral organ identity functions.

The specification of the B domain, in which petal and

stamens arise, also depends on the activity of the floral

meristem identity genes in concert with various feedback

controls. Activation of AP3 expression in petal and stamen

primordia depends on the activity of UNUSUAL FLORAL

ORGANS (UFO) in conjunction with LFY and AP1 (Lee et al.,

1997; Ng and Yanofsky, 2001; Chae et al., 2008). LFY, along

with AP1, directly activates AP3 transcription and this

provides floral specificity (Hill et al., 1998; Ng and Yanofsky,

2001; Lamb et al., 2002). UFO is expressed in a variety of

tissues, but in flowers its expression largely coincides with

the B domain, providing regional specificity to AP3 activa-

tion (Lee et al., 1997; Long and Barton, 1998; Samach et al.,

1999). UFO encodes the F-box component of an SCF

ubiquitin ligase, and its function in protein degradation is

required to promote AP3 expression (Chae et al., 2008). UFO

physically interacts with LFY, and so may act via degradation

of proteins at the AP3 promoter that in turn stimulates LFY

activity (Chae et al., 2008). SEP3 also acts as a LFY co-factor,

not only in regulating AP3, but also PI and AG (Liu et al.,

2009).

Although PI is initially expressed more broadly than AP3,

expression of PI and AP3 in petal and stamen primordia

becomes coincident through auto- and cross-regulatory

interactions (Jack et al., 1992, 1994; Goto and Meyerowitz,

1994). AP3 and PI bind to DNA as a heterodimer and the

activities of both gene products are required to maintain

their own and each other’s expression (Jack et al., 1992;

Goto and Meyerowitz, 1994; Riechmann et al., 1996). In the

case of AP3 these interactions appear to occur through direct

binding of the AP3/PI heterodimer to AP3 regulatory

sequences (Hill et al., 1998; Tilly et al., 1998; Honma and

Goto, 2000). Maintenance of AP3 expression in petal and

stamen primordia also depends on AG and AP1 (Gomez-

Mena et al., 2005). Furthermore, the AP3 gene product, in

conjunction with PI, negatively regulates the expression of

AP1 early in flower development (Sundstrom et al., 2006).

Together, these positive and negative feedback controls

operate to refine and maintain the domains of ABC gene

expression.

Once expressed in specific spatial domains, these MADS

box gene products probably act as part of larger protein

complexes to specify distinct organ identities (Figure 4c). In

most cases, these protein complexes consist of one or more

ABC proteins in combination with a SEP protein (Fan et al.,

1997; Honma and Goto, 2001; Pelaz et al., 2001; Favaro et al.,

2003; de Folter et al., 2005; Sridhar et al., 2006; Immink

et al., 2009). Since AP1 and the SEP proteins possess

transcription activation domains while AG, PI and AP3 do

not, it has been suggested that transcription of target gene

promoters depends on the association of particular MADS

box proteins so as to incorporate transactivation activity

(Goto et al., 2001; Honma and Goto, 2001; Jack, 2001;

Theissen, 2001). Additionally, the formation of MADS

protein complexes may facilitate transcription through

stabilizing protein complex–DNA interactions or through

cooperative binding to adjacent sites (Egea-Cortines et al.,

1999; Melzer et al., 2009). The SEP1, -2 and -3 genes are

expressed in the second, third and fourth whorls, while SEP4

is expressed throughout the floral bud (Ma et al., 1991;

Flanagan and Ma, 1994; Savidge et al., 1995; Ditta et al.,

2004). As such, the SEP proteins can act as general co-factors

for the spatially limited ABC proteins in promoting tran-

scription in different regions of the flower.

The combinatorial action of the organ identity gene

products results in the specification of sepals, petals,

stamens and carpels, yet how this occurs is still largely

unknown. Temperature shift experiments and mosaic anal-

yses have been used to suggest that the organ identity gene

products are required throughout much of floral develop-

ment (Bowman et al., 1989; Carpenter and Coen, 1990). This

implies that the organ identity gene products directly

orchestrate the expression of different suites of genes at

different times in development. This idea is borne out by the

analyses of several targets of the MADS box organ identity

genes. SPOROCYTELESS/NOZZLE (SPL/NZZ) is required

during late stages of stamen development for microsporo-

genesis and consequent pollen formation (Schiefthaler

et al., 1999; Yang et al., 1999). AG binds to the promoter

of, and directly regulates the expression of, SPL/NZZ in the

differentiating tissues of the stamen (Ito et al., 2004). Sim-

ilarly, AP3 and PI directly regulate the expression of NAP late

in petal development during the transition from cell division
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to cell expansion phases of organogenesis (Sablowski and

Meyerowitz, 1998).

The organ identity genes also appear to control a number

of phytohormone biosynthetic or response genes. For

instance, AG regulates jasmonic acid production through

directly regulating the expression of a jasmonic acid bio-

synthetic gene in late-stage stamens (Ito et al., 2007). AG

also directly regulates the expression of several genes

implicated in gibberellin biosynthesis (Gomez-Mena et al.,

2005). Gibberellin signaling in turn upregulates the expres-

sion of AP3, PI and AG, as well as jasmonic acid biosynthe-

sis, in a positive feedback loop to promote continued stamen

development (Yu et al., 2004b; Cheng et al., 2009). Many

other putative targets of the organ identity genes have been

identified through whole genome-based approaches (Zik

and Irish, 2003b; Wellmer et al., 2004; Alves-Ferreira et al.,

2007; Peiffer et al., 2008; Kaufmann et al., 2009), and their

characterization undoubtedly will lead to a greater under-

standing of the feedback loops and networks involved in

multiple aspects of organ growth and differentiation.

SETTING THE BOUNDARIES

Floral organ formation also relies on the establishment of

boundaries – boundaries between the floral meristem and

the organ primordia to establish each whorl and boundaries

within a whorl to define the individual organs. These

boundaries are morphologically distinct regions; cells in the

boundaries display lower rates of division and are smaller

than cells in the surrounding regions (Breuil-Broyer et al.,

2004; Reddy et al., 2004; Aida and Tasaka, 2006b). Such

boundaries appear to be critical in isolating the distinct

populations of cells that can then go on to form organ pri-

mordia (Aida and Tasaka, 2006b). A number of boundary

genes have been defined that are essential for demarcating

these domains and for organogenesis, as mutations in

boundary genes can disrupt organ formation (Aida and

Tasaka, 2006b; Rast and Simon, 2008). By specifying the

boundary of an organ, these genes in effect define the size of

the primordium and resulting organ.

Several genes have been identified that have roles in

establishing or maintaining interwhorl boundaries. Since

these interwhorl boundaries function in delimiting organ

identity gene expression, alteration in the expression of

organ identity genes is a readout of disruptions in boundary

gene function. For instance, loss of function of SUPERMAN

(SUP) results in extra stamens due to the ectopic expression

of AP3 and PI (Bowman et al., 1992; Sakai et al., 1995). SUP

is expressed at the boundary between the third and fourth

whorls, and appears to have a role in repressing growth in

this region (Sakai et al., 1995, 2000; Kater et al., 2000; Nandi

et al., 2000). In turn, AP3, PI and AG are required for

appropriate SUP expression at the third–fourth whorl

boundary, implying that a feedback loop acts to maintain

the correct demarcation of this boundary (Sakai et al., 2000;

Yun et al., 2002). SUP encodes a single C2H2 zinc finger

DNA-binding protein that has been shown to have a potent

transcriptional repression domain required for its function

(Dathan et al., 2002; Hiratsu et al., 2002, 2003, 2004). RABBIT

EARS (RBE) also encodes a single C2H2 zinc finger protein

that is closely related to SUP, and has similar roles in

interwhorl boundary specification (Takeda et al., 2004;

Krizek et al., 2006). RBE, however, acts to maintain the

boundary between the second and third whorls. This occurs

through the action of RBE in repressing AG expression in the

second whorl (Krizek et al., 2006).

Although it is clear that morphologically distinct inter-

whorl boundaries are established early in floral develop-

ment and are associated with boundary-specific gene

expression patterns, the extent to which establishing the

domains of organ identity gene function is a prerequisite for

establishing boundaries, or if the establishment of bound-

aries serves to define the domains of organ identity gene

expression, remains unclear. Presumably, the maintenance

of interwhorl boundaries depends on feedback between

these different pathways. Furthermore, maintenance of

these boundaries also depends on negative feedback

regulation from genes expressed in the developing organ

primordia themselves (Goldshmidt et al., 2008; Xu et al.,

2008).

The CUP-SHAPED COTYLEDON1, -2 and -3 (CUC1–3)

genes have a central role in specifying boundaries during

both vegetative and floral development (Aida et al., 1997,

1999; Takada et al., 2001; Vroemen et al., 2003; Aida and

Tasaka, 2006a). These partially redundant NAC domain

transcription factors are expressed at boundaries and are

thought to inhibit cell growth in those regions. In flowers,

the establishment of intrawhorl boundaries depends in part

on the accurate regulation of the CUC genes through the

action of a floral-specific microRNA, miR164c. EARLY

EXTRA PETALS1 (EEP1) encodes miR164c, and loss of

function of eep1 results in extra petals due to the failure to

appropriately regulate CUC transcript accumulation at the

boundaries between petal primordia (Baker et al., 2005).

Although miR164c is expressed in multiple tissues, it is the

only member of the miR164 family that is expressed

uniquely at the boundaries between petal primordia, thus

conferring its flower-specific role (Laufs et al., 2004; Baker

et al., 2005; Sieber et al., 2007).

Regulating auxin accumulation is important for establish-

ing boundaries during vegetative development, and this is

also likely to be true in flower primordia (Heisler et al., 2005;

Rast and Simon, 2008). PETAL LOSS (PTL), encoding a

trihelix transcription factor, is required to establish intra-

whorl boundaries between sepal primordia and is expressed

at the boundaries of these organs (Griffith et al., 1999;

Brewer et al., 2004). PTL acts to suppress growth at interse-

pal boundary regions, since loss of ptl activity results in

sepal fusions, while constitutive overexpression of PTL
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results in a general inhibition of growth (Brewer et al., 2004).

PTL also positively regulates the expression of RBE, sug-

gesting that PTL also participates in interwhorl boundary

specification (Takeda et al., 2004). The localized expression

of PTL in boundary regions is regulated by PINOID, which

regulates auxin transport in a number of tissues (Brewer

et al., 2004). This suggests that PTL is important in

modulating the response to auxin in establishing or main-

taining intrawhorl boundaries in a specific region of the

flower. PTL appears to act independently of the CUC genes

in boundary specification, suggesting that multiple inde-

pendent pathways are important in establishing intrawhorl

boundaries in the flower (Brewer et al., 2004).

ORGAN GROWTH

The development of particular organ morphologies depends

on appropriate regulation of size and shape. Specification of

size and shape in turn depends on spatial and temporal

control of both cell division and cell expansion. In flowers,

each organ grows initially largely through cell proliferation,

followed by a burst of directional cell expansion to sculpt the

final form of the organ (Hill and Lord, 1989; Rolland-Lagan

et al., 2003; Dinneny et al., 2004; Anastasiou and Lenhard,

2007). Cell-to-cell signaling is also important to coordinate

growth across the developing organ (Jenik and Irish, 2000;

Fulton et al., 2009). Despite the unique attributes of floral

tissues, surprisingly little is known of the molecular pro-

cesses regulating floral organ growth. Quantitative trait

locus analyses indicate that there are multiple loci that act

specifically during Arabidopsis floral development to regu-

late floral organ size (Juenger et al., 2005). This suggests,

though, that any individual gene may have only minor

effects on size control, precluding easy identification of such

genes using genetic approaches. Nonetheless, a few genes

have been identified that have roles in regulating growth in

the flower.

Several genes have been identified that promote cell

proliferation in floral organs. These include AINTEGUMEN-

TA (ANT), encoding an AP2-domain family transcription

factor, and its homologs, which act in part through negative

regulation of AG (Elliott et al., 1996; Klucher et al., 1996;

Krizek, 1999, 2009; Krizek et al., 2000; Mizukami and Fischer,

2000). Plants mutant for ant show a reduction in organ size,

and display ectopic AG expression that presumably disrupts

WUS-dependent proliferative growth early during floral

organogenesis. JAGGED (JAG) and NUBBIN (NUB), encod-

ing partly redundant C2H2 zinc finger transcription factors,

also promote cell proliferation but act predominantly in the

distal regions of floral organs (Dinneny et al., 2004, 2006;

Ohno et al., 2004). KLUH, encoding a cytochrome P450,

promotes cell proliferation during early phases of organ

growth (Zondlo and Irish, 1999; Anastasiou et al., 2007).

KLUH appears to be required for cell-to-cell signaling

necessary for regulating organ growth, and it has been

proposed that diluting out KLUH activity as cells divide can

act as a size-sensing mechanism (Anastasiou et al., 2007).

BIG BROTHER (BB), encoding an E3 ubiquitin ligase,

appears to have the opposite effect, in that it is required to

restrict floral organ growth by limiting the duration of cell

proliferation (Disch et al., 2006). Presumably BB targets one

or more growth stimulators for degradation. These are

unlikely to be ANT, JAG or KLUH as genetic evidence

suggests that BB operates in a pathway independent of

these gene products (Disch et al., 2006; Anastasiou et al.,

2007).

Few genes have been identified that act specifically to

regulate cell expansion during later phases of floral organ

growth. One possible explanation for this is that the organ

identity gene products differentially regulate ubiquitously

acting factors controlling cell expansion to promote floral-

organ specific growth. One example of this is the basic helix-

loop-helix gene BIG PETAL (BPE) (Szecsi et al., 2006). BPE

produces two transcripts via alternative splicing, one that is

ubiquitously expressed and the other that is expressed

preferentially in differentiating petals; the production of the

petal-specific transcript is positively regulated by AP1, AP3,

PI and SEP3 while being negatively regulated by AG.

Presumably this regulation is indirect, with the organ

identity gene products regulating components of the splic-

ing machinery in a temporal- and organ-specific manner.

ORGAN AND CELL-TYPE DIFFERENTIATION

How does the information embodied in the action of the

organ identity genes, boundary genes and genes involved in

growth result in the differentiation of the unique tissues

and cell types of the flower? The identification and charac-

terization of the MADS box organ identity genes as well as

floral genes involved in growth and patterning has paved the

way for a number of recent investigations into elucidating

how these differentiation processes are achieved.

Sepals

Sepals superficially resemble leaves, but they are smaller,

lack stipules and possess highly elongated epidermal cells

(Irish and Sussex, 1990). SEP4 and AP1 are both necessary

for conferring these sepal-specific characteristics, reflecting

their role as organ identity genes (Irish and Sussex, 1990;

Ditta et al., 2004). Apart from the action of these genes,

though, little is known about how sepal-specific cell types

are established. While whole genome approaches have

identified a number of genes that appear to be expressed

predominantly in sepals (Wellmer et al., 2004; Ma et al.,

2005; Peiffer et al., 2008), as of yet the processes controlled

by such genes have not been investigated.

Petals

The processes controlling petal primordium initiation and

growth are beginning to be elucidated (Irish, 2008), but only
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a few genes involved in petal morphogenesis have been

identified. These include ROXY1, encoding a glutaredoxin

that presumably regulates the redox status of target proteins

(Xing et al., 2005). One such target appears to be PAN, since

ROXY1 and PAN physically interact (Li et al., 2009). As PAN

is required for floral meristem determinacy, these observa-

tions suggest that post-translational controls also play an

important role in feedback regulation necessary for floral

organ formation.

Arabidopsis petals are quite distinctive. They are relatively

large and spoon-shaped, and possess unusual conical

epidermal cells on their adaxial surface. These cells give

petals their sheen and, in insect pollinated species, can

influence pollinator behavior (Noda et al., 1994; Whitney

et al., 2009). Surprisingly, though, little is known as to how

these, or other specialized petal cell types, arise. MYB

domain transcription factors have been identified in Antir-

rhinum that control the formation or shape of these conical

epidermal cells; homologs have been identified in Arabid-

opsis but no function has yet been ascribed to these genes

(Baumann et al., 2007).

Stamens

The stamens each consist of a four-lobed anther in which

microsporogenesis occurs, and a filament that serves to

transport nutrients to the anther (Goldberg et al., 1993). The

anther is composed of several cell types, including the

epidermis, endothecium and tapetum that surround

the microsporocyte, that are required for pollen develop-

ment. A large number of genes expressed exclusively or

predominantly in stamens have been identified through

whole genome analyses (Zik and Irish, 2003b; Hennig et al.,

2004; Wellmer et al., 2004; Ma, 2005; Nakayama et al., 2005;

Alves-Ferreira et al., 2007; Wijeratne et al., 2007). Also, a

number of genes involved in stamen differentiation have

been identified through screening for male sterile mutations

(e.g. Sanders et al., 1999). Many of the characterized stamen

differentiation genes are required for either tapetum devel-

opment and/or microsporogenesis (Feng and Dickinson,

2007). A number of these are also required for female

reproductive development, indicating that there are some

commonalities in these processes.

SPL/NZZ, which is transcriptionally activated by AG, is

required for the formation of the endothecium and tapetum

and for microsporogenesis (Schiefthaler et al., 1999; Yang

et al., 1999; Ito et al., 2004). SPL/NZZ expression, even in the

absence of AG function, can still induce microsporogenesis,

indicating that SPL/NZZ is required for specifying identity of

a subset of the tissue types regulated by AG (Ito et al., 2004).

However, this induction of microsporogenesis is spatially

limited to the distal-lateral regions of lateral organs, imply-

ing that the spatial domain of SPL/NZZ expression is

regulated by AG-independent inputs. SPL/NZZ encodes a

MADS-domain-related transcription factor, and regulates

the expression of the glutaredoxin genes ROXY1 and ROXY2

(Xing and Zachgo, 2008). ROXY1, in addition to its role in

petal morphogenesis, partially overlaps in function with

ROXY2 in regulating anther development (Xing and Zachgo,

2008). ROXY1 and -2 act in part through regulating the

activation of DYSFUNCTIONAL TAPETUM (DYT1), a bHLH

transcription factor that in turn is required for tapetum

development (Zhang et al., 2006). A number of other genes,

including EXCESS MICROSPOROCYTES1/EXTRA SPOROG-

ENOUS CELLS (EMS1/EXS) and TAPETUM DETERMINANT1

(TPD1) have been identified that are also required for

tapetum development and function to regulate the expres-

sion of DYT1 (Canales et al., 2002; Zhao et al., 2002; Yang

et al., 2003). EMS1/EXS encodes a putative receptor kinase,

while TPD1 encodes a putative ligand, indicating that cell–

cell signaling is an integral step in tapetum specification.

Carpels

Arabidopsis possesses two carpels that together form the

gynoecium. The gynoecium consists of an ovary in which

multiple seeds develop, a short style and is topped by a

stigma. The gynoecium matures into the fruit, or silique, and

a number of genes regulating the specification of different

gynoecial cell types have been identified (Ferrandiz et al.,

1999; Ostergaard, 2009) (Figure 5). Several MADS box

genes, including AG, SHATTERPROOF1 and -2 (SHP1, -2)

and SEEDSTICK (STK), have partially redundant roles in

specifying carpel identity and probably function together in

a transcriptional complex (Favaro et al., 2003; Pinyopich

Figure 5. Genes involved in tissue specification in the gynoecium.

Cartoon diagram of a cross section of the gynoecium, with genes important in

specifying the different tissue types indicated. At the valve margin, specialized

cells that contribute to the separation layer differentiate and are necessary for

seed pod shattering. Notation as in Figure 2. r = replum, v = valve, s = valve

margin and separation layer.
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et al., 2003). A variety of recent studies have illuminated

some of the transcriptional cascades that then act to specify

different gynoecial tissue types, as well as some of the roles

for auxin in patterning both the radial and apical–basal axes

of the gynoecium.

In addition to their role in promoting carpel identity, SHP1

and SHP2 are required for the differentiation of the dehis-

cence zone at the valve margins in the maturing fruit

(Liljegren et al., 2000). Plants doubly mutant for shp1 and

shp2 fail to form lignified valve margin and separation layer

cells that are necessary for pod shatter. In turn, SHP1 and

SHP2 positively regulate the expression of two bHLH

transcription factors, INDEHISCENT (IND) and ALCATRAZ

(ALC), that are also required for normal differentiation of the

valve margins (Rajani and Sundaresan, 2001; Liljegren et al.,

2004). The restriction of expression of SHP1, SHP2, IND and

ALC to the valve margins is controlled by the MADS box

transcription factor FRUITFULL (FUL), which is expressed in

the valve (Ferrandiz et al., 2000b; Liljegren et al., 2004).

Limiting SHP1, SHP2 and IND expression to the valve margin

also depends on the action of the homeodomain gene

REPLUMLESS (RPL) which is required for replum develop-

ment (Roeder et al., 2003). At least part of the mechanism

specifying the stripe of valve margin cells depends on the

generation of an auxin minimum along these cells (Sorefan

et al., 2009). IND is required for the polar localization of PIN

auxin transporters, and causes a localized depletion of auxin

in the valve margin that in turn is necessary for the specifi-

cation of this tissue (Sorefan et al., 2009). Auxin presumably

has a more general role in regulating carpel tissue differen-

tiation, since SPATULA (SPT), which is required for the

formation of the septum, stigma and transmitting tract, has

been suggested to act as an inhibitor of auxin transport

(Alvarez and Smyth, 1999; Nemhauser et al., 2000; Heisler

et al., 2001; Balanza et al., 2006). Furthermore, HECATE1, -2

and -3 (HEC1–3), three partly redundant bHLH genes whose

products dimerize with that of SPT and presumably regulate

the activity of the SPT protein, are also required for carpel

tissue differentiation (Gremski et al., 2007).

Auxin signaling is also important for the apical–basal

patterning of the gynoecium, since a number of mutations

affecting this process turn out to be lesions in genes

required for auxin signaling or perception, while disruption

of auxin synthesis or transport can result in aberrant

gynoecium development (Sessions et al., 1997; Nemhauser

et al., 2000; Cheng et al., 2006). Based on these analyses,

it has been proposed that a gradient of auxin action is

necessary for gynoecium patterning, with high auxin con-

centrations being required for style and stigma develop-

ment, and low levels permissive for specification of the base

(Nemhauser et al., 2000). STYLISH1 and -2 (STY1, -2) have

partly redundant roles in specifying the style and stigma,

and STY1 has been shown to upregulate the expression of

the auxin biosynthetic gene YUCCA4 in the apical portion of

the gynoecium (Kuusk et al., 2002; Sohlberg et al., 2006).

STY1 also upregulates the expression of the NGATHA family

of B3 transcription factors, which in turn act in a positive

feedback loop to promote the expression of other auxin

biosynthetic genes in the style (Alvarez et al., 2009; Trigu-

eros et al., 2009).

THE NEXT DECADE

From the initial characterization of floral organ identity genes

to the detailed view we now have of the diverse pathways

orchestrating flower development, the past few decades of

Arabidopsis research have indeed produced a rich harvest. It

is now clear that not only are a number of feedback and cross-

regulatory controls acting to specify different tissues and

organs, but the relative timing of these events is critical for

normal floral development to ensue. In the future, just as

important as identifying new players in these pathways, we

need to understand the details of when and where known

gene products are acting at the cellular and subcellular levels.

Given that so many of the key genes involved in regulating

floral organogenesis encode transcription factors, elucidat-

ing the transcriptional cascades and associated gene

regulatory networks controlled by such genes will be key.

Ultimately, this will allow for a systems-level understanding

of how all these components work together in forming the

flower. The next decade of investigations into Arabidopsis

flower development promises to be even more fruitful.
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